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Probability density function of turbulent velocity fluctuations
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The probability density function~PDF! of velocity fluctuations is studied experimentally for grid turbulence
in a systematical manner. At small distances from the grid, where the turbulence is still developing, the PDF is
sub-Gaussian. At intermediate distances, where the turbulence is fully developed, the PDF is Gaussian. At large
distances, where the turbulence has decayed, the PDF is hyper-Gaussian. The Fourier transforms of the velocity
fluctuations always have Gaussian PDFs. At intermediate distances from the grid, the Fourier transforms are
statistically independent of each other. This is the necessary and sufficient condition for Gaussianity of the
velocity fluctuations. At small and large distances, the Fourier transforms are dependent.
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I. INTRODUCTION

While velocity differences in turbulenceu(x1dx)
2u(x) have attracted much interest, velocity fluctuatio
u(x) themselves are also fundamental in describing the
bulence. Usually it is observed that the probability dens
function ~PDF! of the velocity fluctuations is close to Gaus
ian @1,2#. However, some experiments yield a sub-Gauss
PDF @3–5#, which has a less pronounced tail than a Gauss
PDF. The reason remains controversial because there
been no systematical studies.

The observed Gaussianity had been explained by appl
the cental limit theorem to the Fourier transformation of t
velocity fluctuations@1#. This theorem ensures that a sum
many independent random variables has a Gaussian PDF@6#.
However, owing to the steep energy spectrum of turbulen
the Fourier transforms have considerably different mag
tudes. In this case, the central limit theorem is not applica
@5#. We first reconsider the condition for the velocity fluctu
tions to have a Gaussian PDF~Sec. II!.

For studies of velocity fluctuations, an experimental a
proach is preferable to the popular direct numerical simu
tion. Although the direct numerical simulation is useful
studying small-scale motions of turbulence, they are no
our interest because the velocity fluctuations are domina
by energy-containing large-scale motions. Those in the di
numerical simulation suffer from its artificial boundary co
dition, initial condition, and forcing.

We obtain experimental data of velocity fluctuations in
wind tunnel downstream of a turbulence-generating g
~Sec. III!. The grid turbulence is not homogeneous in t
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mean-wind direction and thus allows us to study developi
fully developed, and decayed states of turbulence by incre
ing the distance between the anemometer and the grid.
find that the PDF of velocity fluctuations changes acco
ingly from a sub-Gaussian to Gaussian, and to hyp
Gaussian~Sec. IV!. Here a hyper-Gaussian PDF has a mo
pronounced tail than a Gaussian PDF. We discuss the
served behavior by using the velocity fluctuations the
selves, the velocity differences, and the Fourier transform

II. THEORY FOR GAUSSIANITY

Suppose that velocity fluctuationsu(x) are measured in a
turbulent flow repeatedly over the range 0<x,L. The
length L is much greater than the correlation lengthl u
5*^u(x1dx)u(x)&ddx/^u2&. Here^•& denotes an ensembl
average. The measurements serve as realizations of the
bulence. Each of them is expanded into a Fourier series

u~x!5 (
n51

`

an~u!cosS 2pnx

L D1bn~u!sinS 2pnx

L D . ~1!

The Fourier transformsan(u) and bn(u) for n@1 have
Gaussian PDFs over the realizations@7# ~see also Ref.@8# for
a more mathematical explanation!. This is because, for ex
ample, the Fourier transforman(u) is obtained as

an~u!5
2

LE0

L

u~x!cosS 2pnx

L Ddx

5
2

L S E
0

L/m

•••dx1E
L/m

2L/m

•••dx

1•••1E
(m21)L/m

L

•••dxD , ~2!,
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with 1!m<n. The segment sizeL/m is set to be large
enough so that the correlation̂u(x1dx)u(x)& has con-
verged to zero atdx5L/m. The integrations*0

L/m
•••dx,

*L/m
2L/m

•••dx, . . . , and* (m21)L/m
L

•••dx are regarded as inde
pendent random variables of the same magnitude. T
an(u) has a Gaussian PDF as a consequence of the ce
limit theorem. The variancêan

2(u)& is equal to the energy
spectrumEn @14#.

The above discussion is not applicable to the Fou
transformsan(u) and bn(u) for n.1, i.e., those for large
wavelengths. Nevertheless, as far as the wavelength is fi
it is possible to show Gaussianity of the corresponding F
rier transform by increasing the data lengthL and hence the
n value. In the limitL→`, the transformsan(u) andbn(u)
for n.1 become zero and do not contribute to the veloc
fluctuationsu(x). We are able to assume safely that all t
Fourier transforms have Gaussian PDFs. Since this fac
independent of detailed dynamics, it is universal.

If and only if all the Fourier transformsan(u) andbn(u)
are statistically independent of each other, the Gaussianit
them leads to Gaussianity of the velocity fluctuationsu(x).
To demonstrate this, we use the characteristic functi
fn

(a)(t) andfn
(b)(t) for the PDFs ofan(u)cos(2pnx/L) and

bn(u)sin(2pnx/L) at any fixed spatial positionx @6#:

fn
(a)~t!5expF2

t2

2!
Encos2S 2pnx

L D G , ~3a!

fn
(b)~t!5expF2

t2

2!
Ensin2S 2pnx

L D G . ~3b!

Here Encos2(2pnx/L) and Ensin2(2pnx/L) are the variances
of an(u)cos(2pnx/L) and bn(u)sin(2pnx/L). From the ex-
pansion formula~1! and the independence of the Fouri
transformsan(u) and bn(u), it follows that the sum of the
logarithms of the characteristic functionsfn

(a)(t) and
fn

(b)(t) is equal to the logarithm of the characteristic fun
tion f(t) for the PDF of the velocity fluctuationsu(x):

ln f~t!5 (
n51

`

ln fn
(a)~t!1 ln fn

(b)~t!52
t2

2! (
n51

`

En .

~4!

Thus the velocity fluctuationsu(x) have a Gaussian PD
with the variancê u(x)2&5(n51

` En . The independence o
the Fourier transforms also leads to the statistical indep
dence of the velocity fluctuationsu(x) at different spatial
positions.

Therefore, the necessary and sufficient condition for
velocity fluctuations to have a Gaussian PDF is the indep
dence of the Fourier transforms. This is a good approxim
tion for fully developed turbulence, where large-scale m
tions of energy-containing eddies are random a
independent. Although turbulence contains small-scale
herent structures such as vortex tubes@9#, their importance to
the velocity fluctuations is negligible, i.e., being as small
the energy ratio of the dissipation range to the ener
containing range.
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III. EXPERIMENTS

The experiments were done in two wind tunnels of M
teorological Research Institute. Their test sections were
0.830.833 and 332318 m in size ~hereafter, respec
tively, the small and large tunnels!. The small tunnel was
used to study developing and fully developed states of g
turbulence, while the large tunnel was used to study fu
developed and decayed states.

Turbulence was produced by placing a grid across
entrance to the test section. The grid consisted of two lay
of uniformly spaced rods, the axes of which were perp
dicular to each other. We used different grids in the small a
large tunnels. The separation of the axes of their adjac
rods were 0.10 and 0.40 m, respectively. The cross sect
of the rods were 0.0230.02 and 0.0630.06 m, respectively.
The mean wind was set to beU.10 m s21 in the small
tunnel andU.20 m s21 in the large tunnel.

We simultaneously measured the streamwise (U1u) and
transverse (v) velocities. They are velocity components th
are parallel and perpendicular to the mean-wind directi
respectively. The measurements in the small tunnel w
done on the tunnel axis fromd50.25 to 2.00 m downstream
of the grid with an interval of 0.25 m. Those in the larg
tunnel were done fromd53.00 to 17.00 m with an interva
of 1.00 m. The ranges of the measurement positions wer
the limit of mechanical constraints of the wind tunnels. Sin
there was no overlap in the distanced between the small- and
large-tunnel measurements, the individual data are identi
by their d values.

We used a hot-wire anemometer, which was compose
a crossed-wire probe and a constant temperature system
wires were 5 mm in diameter, 1.25 mm in effective length
1.25 mm in separation, and oriented at645° to the mean-
wind direction. The wire temperature was 280°C, while t
air temperature was 29–30°C in the small tunnel a
14–19°C in the large tunnel. We calibrated the anemom
before and after the measurements.

The signal was low-pass filtered with 24 dB/octave a
sampled digitally with 16-bit resolution. In the small-tunn
measurements, the filtering was at 8 kHz and the samp
was at 16 kHz. In the large-tunnel measurements, the fil
ing was at 20 kHz and the sampling was at 40 kHz. T
entire length of the signal was as long as 53106 points. We
obtained longer data of 23107 points at the positionsd
50.25, 2.00, 8.00, and 12.00 m.

The turbulence levels, i.e., the ratios of the root-me
square values of the velocity fluctuations^u2&1/2 and^v2&1/2

to the mean streamwise velocityU, were always low
(&0.2; see below!. This is a good characteristic of grid tu
bulence and allows us to rely on the frozen-eddy hypothe
of Taylor, ]/]t52U]/]x, which converts temporal varia
tions into spatial variations in the mean-wind direction.

The resultant spatial resolution is comparable to the pr
size, ;1 mm. Since the probe is larger than the Kolmo
orov length, 0.1–0.2 mm, the smallest-scale motions of
flow were filtered out. The present resolution is neverthel
typical of hot-wire anemometry@2,4,10–12#.
4-2
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Figure 1 shows the mean streamwise velocityU, the
root-mean-square fluctuations^u2&1/2 and ^v2&1/2, the cor-
relation lengths l u and l v , the Taylor microscalel
5@^u2&/^(]u/]x)2&#1/2, and the turbulence levelŝu2&1/2/U
and ^v2&1/2/U. For these and the other similar diagram
open symbols denote the streamwise velocity while fil
symbols denote the transverse velocity. The flow parame
change systematically with the distance from the grid, in
cating a systematical change of the turbulence. This is e
cially the case in the turbulence levels. Our following stud
suggest^u2&1/2/U*0.1 for the developing state,^u2&1/2/U
.0.04–0.1 for the fully developed state, and^u2&1/2/U
&0.04 for the decayed state.

IV. RESULTS AND DISCUSSION

A. Overview

Figure 2 demonstrates that Fourier transforms of the
locity fluctuations have Gaussian PDFs at the positiond

FIG. 1. ~a! Mean streamwise velocityU and root-mean-squar
values of velocity fluctuationŝu2&1/2 and ^v2&1/2. ~b! Correlation
lengthsl u and l v , and Taylor microscalel. ~c! Turbulence levels
^u2&1/2/U and ^v2&1/2/U. The abscissa is the distanced from the
grid. The open circles denote the streamwise velocityu, while the
filled circles denote the transverse velocityv. The horizontal dotted
lines separate the turbulence levels for which the turbule
is developing, fully developed, and decayed. In the cal
lation of the Taylor microscale, the velocity derivatives we
estimated as, e.g.,]u/]x5@8u(x1D)28u(x2D)2u(x12D)
1u(x22D)#/(12D), whereD is the sampling interval.
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50.25, 2.00, 8.00, and 12.00 m. The individual data w
divided into 4864 segments of 212 points, which were re-
garded as independent realizations of the turbulence. T
were windowed by a flat-topped function, which rises fro
zero to unity in the first small fraction of the data and fa
back to zero in the last small fraction. The PDFs shown
Fig. 2 are those for the wave numberk5n/L57 m21,
where the energy spectra atd50.25 m have a peak~see
below!. Since the PDFs ofan and bn should be the same
they were put together in order to minimize statistical unc
tainties. We also obtained Gaussian PDFs of the Fou
transforms at the other wave numbers and at the other p
tions in the wind tunnels.

However, velocity fluctuations do not necessarily ha
Gaussian PDFs. Figure 3 shows the PDFs at the posit
d50.25, 2.00, 8.00, and 12.00 m. The transverse-velo
PDF is sub-Gaussian atd50.25 m, Gaussian atd52.00 and
8.00 m, and hyper-Gaussian atd512.00 m. The
streamwise-velocity PDF tends to be skewed owing to
shear flow.

Figure 4 shows the flatness factorsFu5^u4&/^u2&2 and
Fv , the skewness factorSu5^u3&/^u2&3/2, and the
streamwise-transverse correlation

e
-

FIG. 2. PDFs of Fourier transforms of velocity fluctuations
the positionsd50.25, 2.00, 8.00, and 12.00 m. The wave numbek
is 7 m21. We vertically shift the PDFs by a factor of 103. The open
circles denote the streamwise velocityu, while the filled circles
denote the transverse velocityv. The solid lines denote Gaussia
PDFs with zero mean and unity standard deviation.
4-3
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Cuv5
^u2v2&2^u2&^v2&

@~^u4&2^u2&2!~^v4&2^v2&2!#1/2
. ~5!

With an increase of the distance from the grid, t
transverse-velocity PDF changes from sub-GaussianF
,3) to Gaussian (F53), and to hyper-Gaussian (F.3).
The streamwise-velocity PDF tends to be skewed (SÞ0)
and changes from hyper-Gaussian to Gaussian, and to h
Gaussian. Also at large distances from the grid, the stre
wise and transverse velocities have a significant correla
(Cuv@0).

Since the streamwise fluctuations suffer from a shear,
are interested mainly in the transverse fluctuations. Th
sub-Gaussian, Gaussian, and hyper-Gaussian PDFs are
ied separately in the following subsections.

B. Sub-Gaussian PDF in developing turbulence

The transverse velocity has a sub-Gaussian PDF at
smallest distance from the grid,d50.25 m~Figs. 3 and 4!.
Figure 5~a! shows energy spectra of the streamwise a
transverse velocities. They have peaks at the wave num
k.7 and 14 m21. The flow is in a transition state from
quasiperiodic motions due to wavy wakes of the grid rods

FIG. 3. PDFs of velocity fluctuations at the positionsd50.25,
2.00, 8.00, and 12.00 m. We vertically shift the PDFs by a facto
103. The open circles denote the streamwise velocityu, while the
filled circles denote the transverse velocityv. The solid lines denote
Gaussian PDFs with zero mean and unity standard deviation.
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weak turbulence. Figure 5~b! shows the correlation coeffi
cient between the Fourier transforms at adjacent wave n
bers, Cnn85^anan8&/(^an

2&^an8
2 &)1/2 with n85n11. At

around the energy peaks, we observe significant correlati
The Fourier transforms are not mutually independent.

The quasiperiodic motions should have finite correlat
lengths. Namely, the motions should not be exactly period
If this were not the case, the central limit theorem would n
be applicable to the calculation of the Fourier transfor
~Sec. II!. Then the transforms would not have a Gauss
PDF. This is inconsistent with our result~Fig. 2!.

For velocity differencesdu5u(x1dx)2u(x) and dv
5v(x1dx)2v(x), wheredx is the separation in the mean
wind direction, Fig. 6 shows the variances^du2& and^dv2&,
the flatness factorsFdu and Fdv , the skewness factorsSdu
and Sdv , and the streamwise-transverse correlationCdudv .
At small separations, we observe enhancements ofFdu ,
Fdv , Sdu , andCdudv . They are due to small-scale cohere
structures@3,9,12,13# and are not of our interest. At larg
separations, we observe oscillations of^du2&, ^dv2&, Fdu ,
Fdv , Sdu , Sdv , andCdudv . Their wavelengths roughly cor

f
FIG. 4. ~a! Flatness factorsFu andFv of velocity fluctuations.

~b! Skewness factorSu . ~c! Streamwise-transverse correlationCuv .
The abscissa is the distanced from the grid. The open circles denot
the streamwise velocityu, while the filled circles denote the trans
verse velocityv. The horizontal dotted lines indicate the valu
expected for independent Gaussian PDFs. The skewness facto
the transverse velocitySv is close to zero within the statistical erro
of about60.02.
4-4
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PROBABILITY DENSITY FUNCTION OF TURBULENT . . . PHYSICAL REVIEW E 65 056304
respond to the wave numberk.7 m21 of the spectral en-
ergy peak. The oscillations of^du2& and^dv2& are in phase,
while those ofSdu andSdv are690° out of phase and thos
of Fdu , Fdv , andCdudv are 180° out of phase.

Our results are explained if the velocity field is a sup
position of a few quasiperiodic motions and a random ba
ground. It is actually possible to reproduce the oscillatio
and their phases qualitatively with a few sinusoidal functio
satisfying the solenoidal condition and a random Gauss
noise.

The quasiperiodic motions are predominant at lo
maxima of the varianceŝdu2& and^dv2&. Since the flatness
factor Fdv is locally minimal and less than 3 there, th
transverse-velocity amplitudes of those quasiperiodic m
tions lie in a limited range~see also Ref.@5#!. This discussion
would apply to the streamwise velocity as well. The oscil
tions of Sdu and Sdv imply the presence of quasiperiod
motions with different wave numbers that are coupled w
each other@see also Fig. 5~b!#.

The background flow is predominant at local minima
the variances. Since the flatness factorFdu is greater than 3
there, the streamwise background tends to be intermitt
This tendency is not significant in the transverse backgrou
which exhibitsFdv.3 even at its local maxima. The sligh
enhancement ofCdudv implies that the streamwise and tran
verse components of the background flow tends to hav
correlation.

Overall, the observed sub-Gaussianity of the transve
fluctuations is due to quasiperiodic motions that have fin

FIG. 5. ~a! Energy spectra of velocity fluctuations at the positi
d50.25 m.~b! Correlation between Fourier transforms at adjac
wave numbersCnn8 with n85n11. The abscissa is the wave num
ber k5n/L.
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amplitudes. The hyper-Gaussianity of the streamwise fl
tuations is due to a background flow that tends to be in
mittent.

C. Gaussian PDF in fully developed turbulence

The transverse velocity has a Gaussian PDF at interm
ate distances from the grid, i.e.,d*1 m in the small tunnel
and d&10 m in the large tunnel~Figs. 3 and 4!. This is
because turbulence is fully developed there. Wavy wake
the grid rods have evolved to energy-containing eddies
are random and independent. The corresponding Fou
transforms are thus independent. Actually, we did not fi
spectral energy peaks such as those observed atd50.25 m.

t

FIG. 6. ~a! Variances^du2& and ^dv2& of velocity differences
du anddv at the positiond50.25 m.~b! Flatness factorsFdu and
Fdv . ~c! Skewness factorsSdu andSdv . ~d! Streamwise-transvers
correlationCdudv . The abscissa is the separationdx. The horizontal
dotted lines indicate the values expected for independent Gaus
PDFs.
4-5
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The wave-number–wave-number correlation in the ener
containing rangek&10 m21 is absent within the statistica
uncertainty,uCnn8u&0.1.

The grid turbulence at the intermediate distances does
exhibit large-separation oscillations of^du2&, ^dv2&, Fdu ,
Fdv , Sdu , Sdv , andCdudv . The flatness factorsFdu andFdv
as well as the skewness factorsSdu andSdv at large separa
tions are identical to the Gaussian values. The streamw
transverse correlationCdudv at large separations is absen
These are observed usually in fully developed turbule
@1,2,10,13#.

D. Hyper-Gaussian PDF in decayed turbulence

The streamwise and transverse velocities have hy
Gaussian PDFs at the greatest distances from the grid
*10 m. The streamwise-transverse correlationCuv is also
enhanced there~Figs. 3 and 4!. For the separationsdx
50.20 m. l u anddx50.40 m.2l u , Fig. 7 shows the flat-
ness factorsFdu andFdv and the streamwise-transverse co
relation Cdudv . They increase with the distance. Since t
grid turbulence has decayed~Fig. 1!, there remain only
strong energy-containing eddies@1#, which intermittently
pass the probe. The enhancement of the flatness factorsFdu
and Fdv is due to enhanced values ofdu and dv, which
should be associated with the surviving strong eddies.
streamwise-transverse correlationCdudv is enhanced ifdu
anddv are enhanced simultaneously at the positions of th
eddies. In this case, velocity fluctuationsu(x) andv(x) are
also enhanced at the eddy positions, resulting in the hy
Gaussian PDFs as well as the significant streamw
transverse correlationCuv .

FIG. 7. ~a! Flatness factorsFdu andFdv of velocity differences
du and dv for separationsdx50.20 m ~circles! and 0.40 m~tri-
angles!. ~b! Streamwise-transverse correlationCdudv . The abscissa
is the distanced from the grid. The open symbols denote th
streamwise velocityu, while the filled symbols denote the tran
verse velocityv. The horizontal dotted lines indicate the valu
expected for independent Gaussian PDFs.
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The presence of large-scale spatial structures implie
correlation among the corresponding Fourier transform
Since the spatial structures consist of many Fourier mod
the correlation is not local in the wave-number space.
though we failed to detect any significant correlation, w
found moderate correlations withuCnn8u.0.2 between many
wave numbers in the energy-containing rangek&10 m21.

Roughly at the position where the flatness factorsFu and
Fv begin to differ from the Gaussian value, the skewne
factor for the streamwise velocitySu changes its sign~Fig.
4!. This is probably because turbulence becomes weak.
positive skewness is more significant at a smaller dista
from the grid and is attributable to the turbulence itself. O
the other hand, the negative skewness is more significant
larger distance. Using a low-pass filtering technique, we
certained the presence of long-wavelength motions along
mean-flow direction (k!1 m21). Their amplitude is larger
and their PDF is more negatively skewed at a larger dista
from the grid. These long-wavelength motions are attrib
able to effects of the wind tunnel, e.g., wall effects and d
celeration of the mean flow.

FIG. 8. ~a! Reynolds number Rel . ~b! Flatness factorsF]u/]x

andF]v/]x of velocity derivatives]u/]x and ]v/]x. ~c! Skewness
factorS]u/]x . The abscissa is the distanced from the grid. The open
circles denote the streamwise velocityu, while the filled circles
denote the transverse velocityv. The skewness factor for the trans
verse velocityS]v/]x is close to zero within the statistical error o
about60.01.
4-6
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E. Small-scale statistics

Small-scale coherent structures such as vortex tube
fully developed turbulence have attracted much inter
@3,9,12,13#. The statistics that are studied most often are
flatness factorsF]u/]x and F]v/]x and the skewness facto
S]u/]x of the velocity derivatives]u/]x and ]v/]x. An in-
crease of the microscale Reynolds number Rel5^u2&1/2l/n
is known to cause the increase ofF]u/]x andF]v/]x and the
decrease ofS]u/]x @9#. Heren is the kinematic viscosity. We
briefly summarize overall trends of Rel , F]u/]x , F]v/]x , and
S]u/]x over distances from the grid. They are not of our
terest but are expected to be helpful in a future experime
research.

The microscale Reynolds number Rel decreases with the
distance as shown in Fig. 8~a!. The flatness factorsF]u/]x and
F]v/]x increase as shown in Fig. 8~b!. The skewness facto
S]u/]x decreases as shown in Fig. 8~c!. Thus the dependence
of F]u/]x , F]v/]x , andS]u/]x on Rel are apparently opposit
to those mentioned above. This is because the turbule
state changes from developing to fully developed, and
decayed with an increase of the distance. In order to com
with other experimental data, the measurement is require
be done at a position where the grid turbulence is in the fu
developed state.

V. CONCLUSION

The PDF of velocity fluctuations was studied systema
cally for grid turbulence. At small distances from the gr
where the turbulence is still developing, there are quasip
ce

.

pp

s

05630
in
st
e

-
al

ce
o
re
to
y

-

ri-

odic motions having finite amplitudes, and hence the PDF
sub-Gaussian. At intermediate distances from the grid, wh
the turbulence is fully developed, motions of energ
containing eddies are random, and hence the PDF is Ga
ian. At large distances from the grid, where the turbulen
has decayed, there remain only strong eddies, and henc
PDF is hyper-Gaussian. The Fourier transforms of the ve
ity fluctuations always have Gaussian PDFs, in accorda
with the central limit theorem. At intermediate distanc
from the grid, the Fourier transforms are statistically ind
pendent of each other. This is the necessary and suffic
condition for Gaussianity of the velocity fluctuations. A
small and large distances, the Fourier transforms are de
dent.

Our result serves as an example that the velocity fluct
tions could have a sub-Gaussian PDF if there exist str
finite-amplitude motions. We suspect that this is the case
experiments of Noullezet al. @3# and Sreenivasan an
Dhruva @4#. They obtainedFv.2.85 in a free air jet and
Fu52.66 in an atmospheric boundary layer, respectively~see
also Refs.@12,11#!, for which no explanation has been pro
posed yet. The signal could suffer from finite-amplitude m
tions generated by the jet nozzle or the surface. It is of in
est to analyze such data in the same manner as in our pre
work.
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