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Probability density function of turbulent velocity fluctuations
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The probability density functiofPDF) of velocity fluctuations is studied experimentally for grid turbulence
in a systematical manner. At small distances from the grid, where the turbulence is still developing, the PDF is
sub-Gaussian. At intermediate distances, where the turbulence is fully developed, the PDF is Gaussian. At large
distances, where the turbulence has decayed, the PDF is hyper-Gaussian. The Fourier transforms of the velocity
fluctuations always have Gaussian PDFs. At intermediate distances from the grid, the Fourier transforms are
statistically independent of each other. This is the necessary and sufficient condition for Gaussianity of the
velocity fluctuations. At small and large distances, the Fourier transforms are dependent.
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I. INTRODUCTION mean-wind direction and thus allows us to study developing,
fully developed, and decayed states of turbulence by increas-
While velocity differences in turbulenceu(x+ 8x)  ing the distance between the anemometer and the grid. We
—u(x) have attracted much interest, velocity fluctuationsfind that the PDF of velocity fluctuations changes accord-
u(x) themselves are also fundamental in describing the turingly from a sub-Gaussian to Gaussian, and to hyper-
bulence. Usually it is observed that the probability densityGaussiar(Sec. IV). Here a hyper-Gaussian PDF has a more
function (PDP of the velocity fluctuations is close to Gauss- Pronounced tail than a Gaussian PDF. We discuss the ob-
ian [1,2]. However, some experiments yield a sub-Gaussiaserved behawor_ by using the velocity fluct'uat|ons them-
PDF[3-5], which has a less pronounced tail than a Gaussiage!ves, the velocity differences, and the Fourier transforms.
PDF. The reason remains controversial because there have
been no systematical studies. , _ IIl. THEORY FOR GAUSSIANITY
The observed Gaussianity had been explained by applying
the cental limit theorem to the Fourier transformation of the Suppose that velocity fluctuationgx) are measured in a
velocity fluctuationd1]. This theorem ensures that a sum of turbulent flow repeatedly over the ranges@<L. The
many independent random variables has a Gaussiarf®DF length L is much greater than the correlation lendth
However, owing to the steep energy spectrum of turbulences [(u(x+ dx)u(x))dx/(u?). Here(- ) denotes an ensemble
the Fourier transforms have considerably different magniaverage. The measurements serve as realizations of the tur-
tudes. In this case, the central limit theorem is not applicabléulence. Each of them is expanded into a Fourier series as
[5]. We first reconsider the condition for the velocity fluctua-

tions to have a Gaussian POSec. I)). o S 21X
For studies of velocity fluctuations, an experimental ap- u(x) = 2 an(u)cog( +bn(u)sin( )
proach is preferable to the popular direct numerical simula- n=1 L L

tion. Although the direct numerical simulation is useful in
studying small-scale motions of turbulence, they are not Ofl'he Fourier transforman(u) and bn(u) for n>1 have
our interest because the velocity fluctuations are dominatedaussian PDFs over the realizatidi@$ (see also Ref8] for
by energy-containing large-scale motions. Those in the direGi more mathematical explanatiofThis is because, for ex-
numerical simulation suffer from its artificial boundary con- amp|e, the Fourier transformﬁ(u) is obtained as
dition, initial condition, and forcing.

We obtain experimental data of velocity fluctuations in a

wind tunnel downstream of a turbulence-generating grid an(u):EfLu(x)cos( 27-rnx>dx
(Sec. lll). The grid turbulence is not homogeneous in the LJo L
2 L/m 2L/m
) ) N . = — f ...dx-f—f ...dx
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with 1<m=n. The segment sizé/m is set to be large ll. EXPERIMENTS
enough so that the correlatiofu(x+ 8x)u(x)) has con-

verged to zero avx=L/m. The integrationsfgm - dx, The experiments were done in two wind tunnels of Me-

SLim teorological Research Institute. Their test sections were of

L .
ooy a5 e e 5 . <0063 and 3218 m i size (hereter, respec
g (u) has a Gaussian PDF as a conse uencéJ of thei centr@l\fely’ the small and large tunnglsThe small tunnel was
M . 2 . d used to study developing and fully developed states of grid
limit theorem. The variancéa;(u)) is equal to the energy .
turbulence, while the large tunnel was used to study fully
spectrumg,, [14].

The above discussion is not applicable to the FourieldeveIOde and decayed states. . .
transformsa,(u) and b,(u) for n=1, i.e., those for large Turbulence was produced by placing a grid across the
" 0 : ' is finitgntrance to the test section. The grid consisted of two layers

it is possible to show Gaussianity of the corresponding FougT uniformly spaced rods, the axes of which were perpen-
rier transform by increasing the data lengtrand hence the dicular to each other. We us.ed different grids in the.sma'll and
n value. In the limitL — =, the transforms,,(u) andb,(u) large tunnels. The separation of thg axes of their adjagent
for n=1 become zero and do not contribute to the veIociterdS were 0.10 and 0.40 m, respectively. The cross sections
fluctuationsu(x). We are able to assume safely that all theOf the rods were 0.020.02 and 0.0&0.06 m, respectively.
Fourier transforms have Gaussian PDFs. Since this fact i§he mean wind was set to H#=10 ms* in the small
independent of detailed dynamics, it is universal. tunnel andU=20 ms " in the large tunnel.

If and only if all the Fourier transforma,(u) andb,(u) We simultaneously measured the streamwlide-{1) and
are statistically independent of each other, the Gaussianity dfansverse«) velocities. They are velocity components that
them leads to Gaussianity of the velocity fluctuations). are parallel and perpendicular to the mean-wind direction,
To demonstrate this, we use the characteristic functiongespectively. The measurements in the small tunnel were
¢ () and ¢{)(7) for the PDFs ofa,(u)cos(Zmx/L) and  done on the tunnel axis froeh=0.25 to 2.00 m downstream
b,(u)sin(2mnx/L) at any fixed spatial positior [6]: of the grid with an interval of 0.25 m. Those in the large

tunnel were done frond=3.00 to 17.00 m with an interval
, (3a) of 1.00 m. The ranges of the measurement positions were to
the limit of mechanical constraints of the wind tunnels. Since
there was no overlap in the distantbetween the small- and
large-tunnel measurements, the individual data are identified
by theird values.

We used a hot-wire anemometer, which was composed of
Here E cos(2mmx/L) and E,sir(2mmx/L) are the variances a crossed-wire probe and a constant temperature system. The
of an(u)cos(2myxL) and b,(u)sin(2znx/L). From the ex-  wires were 5 um in diameter, 1.25 mm in effective length,
pansion formula(1) and the independence of the Fourier 1 25 mm in separation, and orienteda#i5° to the mean-
transformsa,,(u) andb,(u), it follows that the(;um of the  \ind direction. The wire temperature was 280°C, while the
Io%arlthms of the characteristic functiong;”(7) and g, temperature was 29-30°C in the small tunnel and
¢ (7) is equal to the logarithm of the characteristic func-14_19°C in the large tunnel. We calibrated the anemometer
tion ¢(T) for the PDF of the VelOCity ﬂUCtuation$(X): before and after the measurements.

" , The signal was low-pass filtered with 24 dB/octave and

a b T sampled digitally with 16-bit resolution. In the small-tunnel

In ¢( T):,Z‘l In ¢7(1)+In 617 (7)=— 21 ,,2::1 En- meaguremgnts,ythe filtering was at 8 kHz and the sampling

(4)  Wwas at 16 kHz. In the large-tunnel measurements, the filter-

ing was at 20 kHz and the sampling was at 40 kHz. The
Thus the velocity fluctuationsi(x) have a Gaussian PDF entire length of the signal was as long as 50° points. We
with the variance(u(x)?)==7_,E,. The independence of obtained longer data of 210’ points at the positionsl

the Fourier transforms also leads to the statistical indepen=0.25, 2.00, 8.00, and 12.00 m.

dence of the velocity fluctuations(x) at different spatial The turbulence levels, i.e., the ratios of the root-mean-
positions. square values of the velocity fluctuatiofis?) /2 and (v2)/2

Therefore, the necessary and sufficient condition for théo the mean streamwise velocity, were always low
velocity fluctuations to have a Gaussian PDF is the indepen-=0.2; see beloy This is a good characteristic of grid tur-
dence of the Fourier transforms. This is a good approximabulence and allows us to rely on the frozen-eddy hypothesis
tion for fully developed turbulence, where large-scale mo-of Taylor, d/dt=—Ud/dx, which converts temporal varia-
tions of energy-containing eddies are random andions into spatial variations in the mean-wind direction.
independent. Although turbulence contains small-scale co- The resultant spatial resolution is comparable to the probe
herent structures such as vortex tuf@ls their importance to  size, ~1 mm. Since the probe is larger than the Kolmog-
the velocity fluctuations is negligible, i.e., being as small asorov length, 0.1-0.2 mm, the smallest-scale motions of the
the energy ratio of the dissipation range to the energyflow were filtered out. The present resolution is nevertheless
containing range. typical of hot-wire anemometrf2,4,10-12.

7_2

PP (7)= ex;{ ~ 3 E,co¢

2mNX
L

g [ 2mnX
¢§]b)(r)=ex;{—§Ensm2( 3 )

(3b)
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FIG. 1. (a) Mean streamwise velocity and root-mean-square FIG. 2. PDFs of Fourier transforms of velocity fluctuations at
values of velocity fluctuationgu?)*? and (v2)*2 (b) Correlation  the positionsd=0.25, 2.00, 8.00, and 12.00 m. The wave number
lengthsl, and|,, and Taylor microscala. (c) Turbulence levels is 7 m . We vertically shift the PDFs by a factor of 10rhe open
(uBYY and (v2)V%U. The abscissa is the distandefrom the  circles denote the streamwise velocity while the filled circles
grid. The open circles denote the streamwise velogjtwhile the  denote the transverse velocity The solid lines denote Gaussian
filled circles denote the transverse veloaityThe horizontal dotted PDFs with zero mean and unity standard deviation.
lines separate the turbulence levels for which the turbulence
is developing, fully developed, and decayed. In the calcu- A
lation of 'E)hegTaylo); microsc?ale, the velocit)yl/ derivatives were :,0,25' ,2‘00’ 8.00, and 12.00 rln The deVI,dual data were
estimated as, e.g.gu/dx=[8u(x+A)—8u(x—A)—u(x+2A) divided mtq 4864 segments. of .22 points, which were re-
+u(x—2A)]/(124), whereA is the sampling interval. garded as independent realizations of the turbulence. They

were windowed by a flat-topped function, which rises from

Figure 1 shows the mean streamwise velodity the  zero to unity in the first small fraction of the data and falls
root-mean-square fluctuatioq®?)'? and (v?)'2, the cor- back to zero in the last small fraction. The PDFs shown in
relation lengthsl, and I,, the Taylor microscale Fig. 2 are those for the wave numbke=n/L=7 m 1,
=[{u?)/{(aul9x)?)]¥2, and the turbulence levelsi?)YYU  where the energy spectra dt=0.25 m have a peaksee
and (v?)V%U. For these and the other similar diagrams,below). Since the PDFs of, andb, should be the same,
open symbols denote the streamwise velocity while filledthey were put together in order to minimize statistical uncer-
symbols denote the transverse velocity. The flow parametetainties. We also obtained Gaussian PDFs of the Fourier
change systematically with the distance from the grid, indi-transforms at the other wave numbers and at the other posi-
cating a systematical change of the turbulence. This is espgions in the wind tunnels.
cially the case in the turbulence levels. Our following studies However, velocity fluctuations do not necessarily have
suggest(u?)¥¥U=0.1 for the developing statéu?)*%U Gaussian PDFs. Figure 3 shows the PDFs at the positions
=0.04-0.1 for the fully developed state, add?)Y%/U d=0.25, 2.00, 8.00, and 12.00 m. The transverse-velocity

=<0.04 for the decayed state. PDF is sub-Gaussian dt=0.25 m, Gaussian at=2.00 and
8.00 m, and hyper-Gaussian at=12.00 m. The
IV. RESULTS AND DISCUSSION streamwise-velocity PDF tends to be skewed owing to a
_ shear flow.
A. Overview

Figure 4 shows the flatness factdeg=(u*)/(u?)? and
Figure 2 demonstrates that Fourier transforms of the veF,, the skewness factorS,=(u®/(u??®? and the

locity fluctuations have Gaussian PDFs at the positidns streamwise-transverse correlation
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FIG. 3. PDFs of velocity fluctuations at the positioths 0.25,

. ) FIG. 4. (a) Flatness factor§, andF, of velocity fluctuations.
2.00, 8.00, and 12.00 m. We vertically shift the PDFs by a factor of Y }
! ’ . . e kewn f . ream -transver rrel .
10°. The open circles denote the streamwise velogjtyhile the (b) Skewness factds, . (¢) Streamwise-transverse correlatip,

. : . L The abscissa is the distandérom the grid. The open circles denote
filled circles denote the transverse veloaityThe solid lines denote g P

Gaussian PDEs with zero mean and unity standard deviation the streamwise velocity, while the filled circles denote the trans-
y " verse velocityv. The horizontal dotted lines indicate the values

expected for independent Gaussian PDFs. The skewness factor for
(u?v?)—(u?)(v?) the transverse velocit$, is close to zero within the statistical error

:[((u4>—(uz)z)(<v4>_<vz>2)]1/2' (5 of about=0.02.

With an increase of the distance from the grid, theweak turbulence. Figure(b) shows the correlation coeffi-
transverse-velocity PDF changes from sub-GaussiBn (cient between the Fourier trgnsforms at adjacent wave num-
<3) to Gaussian R=3), and to hyper-GaussiarF&3).  bers, Cpp=(ana,)/((af)(a;,)*? with n’=n+1. At
The streamwise-velocity PDF tends to be skew&d: () around the energy peaks, we observe significant correlations.
and changes from hyper-Gaussian to Gaussian, and to hypgrhe Fourier transforms are not mutually independent.
Gaussian. Also at large distances from the grid, the stream- The quasiperiodic motions should have finite correlation
wise and transverse velocities have a significant correlatiokengths. Namely, the motions should not be exactly periodic.
(CLp,>0). If this were not the case, the central limit theorem would not
Since the streamwise fluctuations suffer from a shear, wée applicable to the calculation of the Fourier transforms
are interested mainly in the transverse fluctuations. TheifSec. I). Then the transforms would not have a Gaussian
sub-Gaussian, Gaussian, and hyper-Gaussian PDFs are stiPF. This is inconsistent with our resuFig. 2).
ied separately in the following subsections. For velocity differencessu=u(x+ éx)—u(x) and év
=v(X+ 6x)—v(x), wheredx is the separation in the mean-
wind direction, Fig. 6 shows the variance8u?) and(sv?),
the flatness factorg s, and Fs,, the skewness factoiSy,
The transverse velocity has a sub-Gaussian PDF at thend S;,, and the streamwise-transverse correlat®g s, -
smallest distance from the grid=0.25 m(Figs. 3 and # At small separations, we observe enhancements- gf,
Figure 5a) shows energy spectra of the streamwise and~;,, Ss,, andCy,s, - They are due to small-scale coherent
transverse velocities. They have peaks at the wave numbessructures[3,9,12,13 and are not of our interest. At large
k=7 and 14 m®. The flow is in a transition state from separations, we observe oscillations(ét?), (Sv?), F,,
quasiperiodic motions due to wavy wakes of the grid rods td= 5, , Ss,, Ss,, andCys, - Their wavelengths roughly cor-

uv

B. Sub-Gaussian PDF in developing turbulence
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FIG. 5. (a) Energy spectra of velocity fluctuations at the position 5 -0.15 . L
d=0.25 m.(b) Correlation between Fourier transforms at adjacent g ' ' @
wave numberE,,» with n’=n+1. The abscissa is the wave num- § 015 | .
berk=n/L. 2
§ 0.10 }
respond to the wave numbkr=7 m~! of the spectral en- 2
ergy peak. The oscillations ¢Bu?) and(sv?) are in phase, £ 005}
i +90° 2
while those ofSg, andS;, are,?o out of phase and those 3 000 AN AW
of Fs,, Fs,, andCg,s, are 180° out of phase. g - . .
Our results are explained if the velocity field is a super- 7 103 102 10-1 100

position of a few quasiperiodic motions and a random back-
ground. It is actually possible to reproduce the oscillations
and their phases qualitatively with a few sinusoidal functions FIG. 6. (&) Variances(du?) and(dv?) of velocity differences
satisfying the solenoidal condition and a random Gaussiadu and v at the positiord=0.25 m.(b) Flatness factor§ ,, and
noise. Fs, . (c) Skewness factorSy, andS;, . (d) Streamwise-transverse
The quasiperiodic motions are predominant at localcorrelationC s, - The abscissa is the separati®n The horizontal
maxima of the variance(ﬁuz) and( v 2>_ Since the flathess dotted lines indicate the values expected for independent Gaussian
factor F5, is locally minimal and less than 3 there, the PDFS.
transverse-velocity amplitudes of those quasiperiodic mo-

tions lie in a limited rangésee also Ref5]). This discussion amplitudes. The hyper-Gaussianity of the streamwise fluc-
would apply to the streamwise velocity as well. The oscilla-tyations is due to a background flow that tends to be inter-
tions of S5, and S, imply the presence of quasiperiodic mijttent.
motions with different wave numbers that are coupled with
each othefsee also Fig. ®)].
The background flow is predominant at local minima of C. Gaussian PDF in fully developed turbulence
the variances. Since the flatness fad¥gy, is greater than 3
there, the streamwise background tends to be intermittent. The transverse velocity has a Gaussian PDF at intermedi-
This tendency is not significant in the transverse backgroundite distances from the grid, i.el=1 m in the small tunnel
which exhibitsF 5,=3 even at its local maxima. The slight and d<10 m in the large tunne(Figs. 3 and % This is
enhancement ot 5, 5, implies that the streamwise and trans- because turbulence is fully developed there. Wavy wakes of
verse components of the background flow tends to have #ie grid rods have evolved to energy-containing eddies that
correlation. are random and independent. The corresponding Fourier
Overall, the observed sub-Gaussianity of the transversttansforms are thus independent. Actually, we did not find
fluctuations is due to quasiperiodic motions that have finitespectral energy peaks such as those observde-8t25 m.

separation (m)
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angles. (b) Streamwise-transverse correlati@, s, . The abscissa z 0201 ° o 1
is the distanced from the grid. The open symbols denote the 5 ° 00,
streamwise velocity, while the filled symbols denote the trans- -0.25 | ° o,
verse velocityv. The horizontal dotted lines indicate the values (c) ™®
expected for independent Gaussian PDFs. -0.30 1 1-0

. . distance from the grid (m)
The wave-number—wave-number correlation in the energy-

containing rang&k=10 m ! is absent within the statistical FIG. 8. (@ Reynolds number Re (b) Flatness factors;,,

uncertainty,|Cp/|=<0.1. andF,,,, of velocity derivativesju/dx and dv/dx. (c) Skewness
The grid turbulence at the intermediate distances does ndactorS;,, 5 . The abscissa is the distandérom the grid. The open
exhibit large-separation oscillations 65u?), (sv?), Fs,, circles denote the streamwise velocity while the filled circles

Fs» Ssu» Ssy» andCg, s, - The flatness factors 5, andF 5, denote the transverse velocity The skewness factor for the trans-
as well as the skewness fact@g, andS;, at large separa- Verse velocityS,,, 5 is close to zero within the statistical error of
tions are identical to the Gaussian values. The streamwisé@Pout=0.01.

transverse correlatiof 5,5, at large separations is absent.

These are observed usually in fully developed turbulence

[1,2,10,13 The presence of large-scale spatial structures implies a
correlation among the corresponding Fourier transforms.
D. Hyper-Gaussian PDF in decayed turbulence Since the spatial structures consist of many Fourier modes,

The streamwise and transverse velocities have hypeﬁhe correlation is not local in the wave-number space. Al-
Gaussian PDFs at the greatest distances from the grid, though we failed to detect any significant correlation, we
=10 m. The streamwise-transverse correlatdy is also ~ found moderate correlations wittC,,,/|=0.2 between many
enhanced therdFigs. 3 and 4 For the separation$x  Wwave numbers in the energy-containing rakgel0 m ™.
=0.20 m=l, and8x=0.40 m=2l,, Fig. 7 shows the flat- Roughly at the position where the flatness factegsand
ness factor§ 5, andF 5, and the streamwise-transverse cor-F, begin to differ from the Gaussian value, the skewness
relation C 4,5, . They increase with the distance. Since thefactor for the streamwise velocit$, changes its sigriFig.
grid turbulence has decaye@Fig. 1), there remain only 4). This is probably because turbulence becomes weak. The
strong energy-containing eddigd], which intermittently  positive skewness is more significant at a smaller distance
pass the probe. The enhancement of the flatness fdefgrs from the grid and is attributable to the turbulence itself. On
and F 5, is due to enhanced values 6fi and v, which  the other hand, the negative skewness is more significant at a
should be associated with the surviving strong eddies. Thiarger distance. Using a low-pass filtering technique, we as-
streamwise-transverse correlati@y,s, is enhanced iféu certained the presence of long-wavelength motions along the
andév are enhanced simultaneously at the positions of thosmean-flow direction k<1 m™1). Their amplitude is larger
eddies. In this case, velocity fluctuationéx) andv(x) are  and their PDF is more negatively skewed at a larger distance
also enhanced at the eddy positions, resulting in the hypefrom the grid. These long-wavelength motions are attribut-
Gaussian PDFs as well as the significant streamwiseable to effects of the wind tunnel, e.g., wall effects and de-
transverse correlatio@,,, . celeration of the mean flow.
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E. Small-scale statistics odic motions having finite amplitudes, and hence the PDF is
Small-scale coherent structures such as vortex tubes HP-Gaussian. Atintermediate distances from the grid, where

fully developed turbulence have attracted much interest® turbulence is fully developed, motions of energy-

[3,9,12,13. The statistics that are studied most often are th&©ntaining eddies are random, and hence the PDF is Gauss-
flatness factord ., and F,,;, and the skewness factor ian. At large distances fr_om the grid, Wher_e the turbulence
S,uox Of the velocity derivativesiu/dx and dv/dx. An in- has d_ecayed, there remain only strong eddies, and hence the
crease of the microscale Reynolds numbey :R@JZ)”Z)\IV PDF is hyper-Gaussian. The Fourier transforms of the veloc-
is known to cause the increase f,,, andF,,,, and the it)_/ fluctuations alvyays have Gaussign PDFs., in acpordance
decrease 08, [9]. Here v is the kinematic viscosity. We with the central limit theorem. At intermediate distances

briefly summarize overall trends of REF sy, Fasa, and from the grid, the Fourier transforms are statistically inde-

S,/ OVer distances from the grid. They are not of our in- pendent of each other. This is the necessary and sufficient
terest but are expected to be helpful in a future experimentaqond't'on for Gaqssmmty of the vglocny fluctuations. At
research. small and large distances, the Fourier transforms are depen-
The microscale Reynolds number,Réecreases with the dent. .
distance as shown in Fig(®. The flatness facto,,, and _ Our result serves as an example that _the veIOC|t_y fluctua-
F increase as shown i'n Fig(i8. The skewngggxfactor tions could have a sub-Gaussian PDF if there exist strong
S”””X decreases as shown in Fich'Thus the dependences finite-amplitude motions. We suspect that this is the case in
gul Ix

of F F ands on R& are apparentlv opnosite experiments of Noullezet al. [3] and Sreenivasan and
guloxs T guloxs gulox & bp Y opp Dhruva [4]. They obtainedF,=2.85 in a free air jet and

to those mentioned above. This is because the turbulenqx_e —2.66 in an atmospheric boundary layer, respectived

i u
state changes from developing to fully developed, and t%\Iso Refs[12,11]), for which no explanation has been pro-

decayed with an increase of the distance. In order to compare 4 vet The sianal could suffer from finite-amolitude mo-
with other experimental data, the measurement is required tﬁ) yet. 9 P

be done at a position where the grid turbulence is in the fully ons generated by the Jet nozzle or the surface. .It is of inter-
est to analyze such data in the same manner as in our present
developed state.

work.

V. CONCLUSION
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